
 

Male circumcision and HIV in Africa 

Mathematical note 
The formal definition of a convolution (main text; Equation 14) is  
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Rate of expansion of male circumcision 
We assume that the coverage of MC increases logistically with time. The analytical 
expression for coverage is then 
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where χ0 is the initial prevalence of MC, t0 is the time at which the logistic term reaches 0.5, 
and α determines the rate at which the coverage of MC increases. For the ten year expansion 
we set t0 = 2010 and α = 0.6/year while for the five year expansion we set t0 = 2007.5 and α 
= 1.2/year giving the coverage as a function of time, illustrated for South Africa in Figure S1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S1. The increase of MC in South Africa starting from a coverage of 35% and 
reaching full coverage in 2015 (red line) and 2010 (blue line). 

Separating contact and transmission parameters 
We focus on interventions that reduce the probability of transmission without changing 
sexual behaviour. The key result (Equation 6 in the main text) is that R0 can be expressed as  

 ( ) ( )0R f g cφ=  3 
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where φ depends on those parameters that determine the risk of infection given contact with 
an infected person and c depends on those parameters that determine the number of sexual 
contacts per unit time. For interventions that reduce transmission probabilities while not 
affecting sexual behaviour, changes in the epidemic can be estimated from changes in the 
transmission probabilities without reference to the (unchanging) sexual behaviour.  An 
absolute value of R0 during the intervention can be estimated by multiplying the relative 
change by an empirical estimate of the pre-intervention R0, which implicitly includes the 
complexities and heterogeneities of sexual behaviour. 

Random mixing 

If the intervention leads to changes in sexual behaviour, at either the individual or population 
level, then further analysis is required.  Such scenarios have been considered in detail in 
previous work [1-6].  If only a fraction of the population is covered by the intervention (such 
as circumcision or vaccination), then the decoupling argument assumes that individuals mix 
randomly with respect to intervention coverage status. If interventions are targeted at specific 
risk groups the contact rates and probability of transmission given contact are not 
independent and cannot be decoupled.  If higher-risk groups are targeted successfully, then 
results from the decoupled analysis will place a conservative lower bound on the benefits of 
the intervention. 

Differential impact of male circumcision on different groups 

Because of the asymmetry of HIV transmission between men and women, prevalence among 
women is generally higher than prevalence among men in heterosexual epidemics [7].  
Higher levels of circumcision could increase this asymmetry in transmission, and increase the 
imbalance in prevalence between men and women. Circumcision will reduce the prevalence 
of infection among all men but will have a greater impact on those that are circumcised. In 
the main text we calculate the impact of MC averaged over women, circumcised men, and 
uncircumcised men, and we make separate estimates of the relative impact on men and 
women. Here we analyse a model that explicitly divides the population into women, 
circumcised men, and uncircumcised men in order to confirm the validity and test the 
accuracy of the results obtained in the main text. We employ a simple model formulation for 
analytic tractability bearing in mind that real-world complexities, including heterogeneity in 
risk and mixing patterns, could affect the results. 

The three-group model 

The disease process is modelled using an SI (susceptible-infected) framework. Infected 
individuals die at per capita rate δ, but we assume constant population size for each group so 
that people who die are replaced immediately by susceptible people of the same type. Each 
individual is assumed to have heterosexual contacts at an effective contact rate c, and women 
divide their contacts among circumcised and uncircumcised men in proportion to their 
frequency in the population. We model transmission using frequency-dependent incidence, 
such that the incidence rate in each group is the product of the number of susceptible people 
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in the group, their contact rate with members of other groups, the probability of infection 
given contact with members of other groups, and the prevalence of infection in the other 
groups. This model is a mechanistically accurate depiction of partnership-based HIV 
transmission, particularly for populations with frequent partner change [8].  
 Let Sj and Ij be the numbers of susceptible and infected individuals in each population 
group where j = u, c or f represent uncircumcised men, circumcised men, and women, 
respectively, and let Nj =Sj + Ij be the total number in each group. The three-group model can 
then be written: 

 fu
u m u

f

IdS I c S
dt N

δ φ= −  4 

 fu
m u u

f

IdI c S I
dt N

φ δ= −  5 

 (1 ) fc
c m m c

f

IdS I c S
dt N

δ φ π= − −  6 

 (1 ) fc
m m c

f

IdI c S
dt N cIφ π= − −δ  7 

 

 ( ) ( )1 1f u
f f f

u c

dS cI II c Sf
dt N N

δ φ χ χ π
⎛ ⎞

= − − + −⎜
⎝ ⎠

⎟  8 

 

 ( ) ( )1 1f u c
f f

u c

dI I Ic Sf I
dt N N fφ χ χ π δ

⎛ ⎞
= − + − −⎜

⎝ ⎠
⎟  9 

 
Here δ is the disease-induced mortality, c is the effective contact rate, χ is the proportion of 
men that are circumcised, φm is the probability per contact of female-to-male transmission, 
and πm is the proportional reduction in this probability if a man is circumcised; φf and πf  are 
the corresponding quantities for male-to-female transmission.  
 To simplify the model, we convert the equations to proportions, introducing new state 
variables ,u u ui I N=  ,c c ci I N=  and f fi I N f= . The three-group model is then 
represented by the following system of equations: 
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We found the endemic equilibrium of this system using Mathematica 5.0 (Wolfram Research, 
Champaign IL), and calculated relative measures of the long-term burden of HIV in different 
groups under different circumcision scenarios.  The resulting expressions are too complex for 
direct interpretation, but are available from the authors upon request.  The proportion of 
prevalent cases that are women agrees precisely with Equation 7 of the main text (derived 
from a simpler two-group model) when χ = 0 or 1, and differs by less than 1.3% at 
intermediate MC coverage.  
 
 
 
 
 
 
 
 
 
 
 
Figure S2. The percentage of all HIV cases that occur in women, as a function of 
circumcision parameters.  In (a) circumcision is assumed to have no protective benefit for 
women (πf  = 0).  In (b), circumcision coverage is 100% (χ = 1).  Other parameters were 
chosen with reference to the South African HIV epidemic as discussed in the main text: δ = 
0.102 yr–1, mcφ = 0.52 yr–1, fcφ  = 1.05 yr–1. 

The impact of MC on men and women 

Figure S2 shows the proportion of all prevalent HIV cases that are women under two 
scenarios: assuming that MC has no effect on male-to-female transmission (Figure S2a), and 
assuming that circumcision coverage is complete but allowing for an effect on female-to-
male and male-to-female transmission (Figure S2b). Figure S2a shows that the proportion of 
cases that are women could only increase to 70% if all men are circumcised and MC reduces 
female-to-male transmission by 88% or more (πm  ≥ 0.88), or if at least 61% are circumcised 
and MC reduces female-to-male transmission by 99% (πm = 0.99). Figure S2b shows that, 
with 100% MC coverage, the proportion of prevalent HIV cases that are women could fall to 
40% only if MC reduced male-to-female transmission by at least 88% (if female-to-male 
transmission is not reduced at all), or if MC reduced male-to-female transmission by 99% and 
female-to-male transmission by 78% or less. 
 If the per contact probability of HIV transmission from uncircumcised men to women is 
twice that from women to uncircumcised men (i.e. φf /φm = 2.0), then in a population with no 
male circumcision (χ = 0) we calculate that 52% of HIV cases will be women (Figure S2a).  
In a wholly circumcised population (χ = 1), if circumcision provides 60% protection to men 
(πm = 0.60) and no protection to women (πf = 0), then the proportion of HIV cases who are 
women will increase to 58%.  In this scenario (χ = 1, πm = 0.60), even if circumcision reduces 
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male-to-female transmission by 50% (πf = 0.5), women will still comprise 55% of HIV cases 
(Figure S2b).  

The impact of MC on circumcised versus uncircumcised males 

Figure S3 shows the impact of MC on the ratio of the prevalence in circumcised to 
uncircumcised men as a function of the reduction in transmission. If circumcision reduces 
female-to-male transmission by 60%, HIV prevalence among circumcised men is still 
expected to be about 78% of that among uncircumcised men, and it is only when the 
reduction in transmission is greater than about 80% that the difference in the prevalence in 
the two groups is substantial. The chronic nature of the infection and the interconnectedness 
of the population both act to average out the risk in the long term. Note, however, that this 
prediction could change if circumcised and uncircumcised men were in different 
communities and sexual mixing among communities was limited. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S3. Ratio of the prevalence of HIV in circumcised to 
uncircumcised men at the steady-state assuming an average 
infectious period of 9.8 years. The relationship is almost 
completely independent of the circumcision coverage, χ, and the 
possible protective effect for women, πf. Other parameters: χ = 
1, πf  = 0, cφm  = 0.52/yr and cφf = 1.04/yr 

Collapsing the three-group model to a one-group model 

In the main text, we fit trends and make projections based on country and regional HIV 
prevalence data.  Because separate time series do not exist for females, uncircumcised males, 
and circumcised males, it is unnecessarily cumbersome to use the three-group model so we 
collapse the three-group model to a one-group SI model. Here we carry out simulations to 
determine the levels of error that may introduced by this procedure. 
 To represent the effects of circumcision in the collapsed model, we use the 
approximations discussed in the main text to replace Equations 10−12 by a single equation 
governing the proportion, i, of all individuals who are infected: 
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 To compare the two models quantitatively, we choose basic parameters to fit the data 
for the South African epidemic, as described in the Methods section of the main text.  Fitting 
an exponential trend line to the South Africa prevalence data gives r = 0.55 ± 0.16/year (best 
estimate ± standard error), which corresponds to an intrinsic doubling time of d = 1.26 ± 0.37 
years. The life expectancy of people infected with HIV and without access to ART, 
standardized to a mean age at infection of 27 years, is τ = 9.8 ± 0.5 years [9,10], so the 
average mortality rate is 0.102 ± 0.005/year.  We then calculate R0 = r/δ+1 [11], yielding the 
value 6.4 ± 1.6 using Monte Carlo simulation to estimate the standard error in the result. 
Since an estimated χ = 0.35 ± 0.10 of South African men are circumcised (Table 1) and MC 
reduces female-to-male transmission by πm=0.60 (0.32−0.76), the value of R0 in the absence 
of circumcision would be ( )1 1 mr δ χπ+ −  or 7.2 ± 1.8. We relate this empirical estimate 
of R0 to the expression derived from the two-sex model, 0 f mR c φ φ δ=  (Equation 6 in the 
main text), to estimate male-to-female and female-to-male transmission rates. Taking φf/φm to 
be 2.0 ± 0.5, we find cφm = 0.52 ± 0.16/year and cφf  = 1.05 ± 0.29/year.  
 
 
 
 
 
 
 
 
 
 
 

Figure S4. Comparison of three-group (blue line) and the equivalent 
one-group (red line) models. Parameter values: χ = 0.35, πm  = 0.60, 
πf  = 0, cφm  = 0.52/yr and cφf = 1.04/yr, δ = 0.102/year and ρ = 
0.29. 

 Finally, for this model comparison we scale the endemic prevalence using the 
Epidemiological Projection Package (EPP) method [12] assuming that a fraction γ of the 
population is at risk for HIV infection, while the remaining 1 − γ are at zero risk.  For R0  = 
6.4 in the presence of 35% MC coverage, we choose γ = 0.29 to yield a steady state 
prevalence near 24.6%, the estimated steady state for South Africa (Table 1). We simulated 
the two models using Berkeley Madonna (Berkeley CA), and the resulting epidemic curves 
are shown in Figure S4. 
 The initial doubling times are 1.35 years for the one-group model, and 1.26 years for 
the three-group model, both close to the data-derived value of 1.26 years. The full three-
group model predicts an endemic prevalence of 23.8% while the collapsed one-group model 
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predicts an endemic prevalence of 24.5%. Thus the collapsed model estimate of endemic 
prevalence has an absolute error of less than 1% or a relative error of less than 3%. 
 For the South African epidemic, then, the one-group model reproduces the predictions 
of the three-group model well, though it slightly overestimates the steady-state prevalence.  
To explore the accuracy of the one-group model as an approximation to the three group 
model we varied the value of πm, the protective efficacy for female-to-male transmission due 
to MC (Figure S5). Introducing a protective effect for females (πf   > 0) always decreases the 
difference between the models. For parameter ranges of interest to our investigation, output 
from the collapsed one-group model matches that of the full three-group model with 
reasonable accuracy (i.e. within a few percentage points).  Because other uncertainties in the 
system far exceed this margin of error, we use the one-group model to fit the prevalence data 
and estimate the impact of MC. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S5. Absolute difference between the percent prevalence as predicted by the one-
group (collapsed) model and the three-group model for different levels of MC 
coverage. The lines give different levels of protective efficacy πm: green, 0.76; red, 
0.60; black, 0.32. Other parameters are the same as in Figure S4. 

Decline of transmission with increasing prevalence 

There is a distribution of sexual risk within all populations depending on gender, age and 
other social factors [13-16]. The EPP model [12] assumes that people are either at a fixed risk 
or zero risk and the model adjusts the size of the risk group to get the desired endemic 
prevalence. Here we make the more realistic assumption that risk varies continuously in the 
population. Since the functional form of the sexual risk distribution will, to some extent, 
determine the way in which incidence falls as prevalence rises, it will also determine the way 
in which the impact of MC varies with increasing efficacy. It must be the case that the 
average contact rate of uninfected people declines with prevalence. If this were not so then 
people at lower risk would have to be infected, on average, before those at higher risk. 
 Let us assume that there are some number of risk groups, each with characteristic 
contact rate cj (j = 1,…, n), and that whenever a person dies in a certain risk group a new 
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person is recruited to the same risk group. This ensures that the proportion of people in each 
risk group remains constant over time whereas, in reality, the attrition of people in higher risk 
groups may reduce the overall risk of infection. This calculation will tend to provide a 
conservative estimate of the extent to which average risk among those who are still 
uninfected declines with prevalence. We denote the number of susceptible and infected 
individuals in group j as Sj and Ij, and the group size Nj = Sj + Ij. If individuals choose partners 
at random (i.e. the fraction of contacts with individuals in group k is equal to the fraction of 
all contacts contributed by members of group k),  then the dynamics of each risk group are 
[4,17] 
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where we have chosen one of the groups, labelled 0, as the reference group. Let ij = Ij/Nj be 
the prevalence in group j, and Ωj be the odds for the prevalence in group j, then 
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Table S1. The number of sexual partners in the last month as reported by men in 
Carletonville, South Africa [18]. ‘Other’ refers to people who say that they have 
had no sexual partners in the previous twelve months. 

Q401: How many times have you had sexual intercourse with anyone in the last 12 months (other 
than a regular partner)?  This includes mistresses, girlfriends, casual partners, prostitutes, or 
somebody you met in a bar or at a special occasion. (If none, then skip Q402). 

No. partners Frequency No. partners Frequency 
0 186 11 0 
1 257 12 2 
2 99 13 0 
3 44 14 1 
4 17 15 0 
5 4 16 0 
6 5 17 0 
7 3 18 0 
8 2 19 0 
9 0 20 16 
10 4 Other 1594 

Q402: How many different people have you had sexual intercourse with in the last month (apart 
from your regular partner?) 
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To obtain an admittedly rough estimate of the relative risk of infection at different 
prevalences we use data from a survey in Carletonville, South Africa, of the number of sexual 
partners (excluding regular partners) reported by men in the previous month [18]. We make 
several simplifying assumptions.  First, we assume that the number of partners reported in the 
survey is indicative of each individual’s habitual contact rate. Second, we assume that those 
who say that they have had a sexual partner in the last year but not in the last month are at the 
same risk as those who say that they have had one sexual partner in the last month (so that we 
combine the categories 0 and 1 in Table S1). Third we assume that those who say that they 
have not had a sexual partner in the last year are indeed at no risk of infection.  
 To determine the relationship between the prevalence and the average risk we first 
choose a value for the prevalence among those who have had one sexual partner in the last 
month, i0. We then calculate the prevalence in all other classes, ij, using Equation 15. 
Knowing the prevalence in each class we can calculate the overall prevalence 
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We then calculate the transmission parameter for susceptible individuals in each group 
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To obtain the average value of the transmission parameter for all those who are still 
susceptible  we take a weighted average over the groups 
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 Because the overall prevalence, i, is uniquely determined by the group prevalences, ij, 
by Equations 17 to 19, the average force of infection can be expressed as a function of the 
overall prevalence, λ(i).  The normalized force of infection for a given prevalence is therefore  
λ(i)/λ(0). We repeat the above process for a range of values of i0 to generate a plot of this 
relationship (Figure S6). 
 Although the exponential curve is close to the curve based on the Carletonville data 
there are many assumptions and approximations involved in the estimation and the result 
should be treated as illustrative of the effect that variation in the risk of infection might have. 
However, the blue line must necessarily be conservative and in the absence of further data the 
exponential model seems reasonable. 

  9/11 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S6. Force of infection, scaled to one at zero prevalence, as a 
function of prevalence. The red line is estimated from survey data 
for Carletonville, South Africa. The green line assumes that the 
risk declines exponentially with prevalence, the blue line that the 
risk has the same value for all those who are at risk as assumed in 
the EPP model. The curves are scaled to pass through the point 
where the curve based on the Carletonville data passes through the 
prevalence among men in the survey (21%). 

References 

1.  Anonymous (2004) Report on the Global AIDS Epidemic. Geneva: UNAIDS. 

2.  McLean AR, Blower SM (1995) Modelling HIV vaccination. Trends in Microbiology 3: 
458-462. 

3.  Hyman JM, Li  J (1997) Behavior Changes in SIS STD Models with Selective Mixing. 
SIAM Journal of Applied Mathematics 57: 1082-1094. 

4.  Garnett G (1998) The influence of behavioural heterogeneity on the population level 
effect of potential prophylactic type 1 human immunodeficiency virus vaccines. Journal 
of the Royal Statistical Society Series A 161: 209-225. 

5.  Blower S, Schwartz EJ, Mills J (2003) Forecasting the Future of HIV Epidemics: the 
Impact of Antiretroviral Therapies & Imperfect Vaccines. 5: 113-125. 

6.  Smith RJ, Blower SM (2004) Could disease-modifying HIV vaccines cause population-
level perversity? Lancet Infect Dis 4: 636-639. 

  10/11 



 

7.  Williams BG, Gouws E, Colvin M, Sitas F, Ramjee G, et al. (2000) Patterns of infection: 
using age prevalence data to understand the epidemic of HIV in South Africa. South 
African Journal of Science 96: 305-312. 

8.  Lloyd-Smith JO, Getz WM, Westerhoff HV (2004) Frequency-dependent incidence in 
models of sexually transmitted diseases: portrayal of pair-based transmission and effects 
of illness on contact behaviour. Proc Biol Sci 271: 625-634. 

9.  CASCADE Collaboration (2000) Time from HIV-1 seroconversion to AIDS and death 
before widespread use of highly-active anti-retroviral therapy. A collaborative analysis. 
Lancet 355: 1131-1137. 

10.  Morgan D, Mahe C, Mayanja B, Okongo JM, Lubega R, et al. (2002) HIV-1 infection in 
rural Africa: is there a difference in median time to AIDS and survival compared with 
that in industrialized countries? AIDS 16: 597-603. 

11.  Anderson RM, May RM (1992) Infectious Diseases of Humans. Oxford. 

12.  Ghys PD, Brown T, Grassly NC, Garnett G, Stanecki KA, et al. (2004) The UNAIDS 
Estimation and Projection Package: a software package to estimate and project national 
HIV epidemics. Sexually Transmitted Infections 80: 5-9. 

13.  Carael M, Holmes K (2001) (editors) The multicentre study of factors determining the 
different prevalences of HIV in sub-Saharan Africa. AIDS 15: S1-S132. 

14.  Garnett GP, Anderson RM (1996) Sexually transmitted diseases and sexual behavior: 
insights from mathematical models. J Infect Dis 174 Suppl 2: S150-161. 

15.  Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, et al. (1997) Heterogeneities 
in the transmission of infectious agents: implications for the design of control programs. 
Proceedings of the National Academy of Sciences of the United States of America 94: 
338-342. 

16.  Schneeberger A, Mercer CH, Gregson SA, Ferguson NM, Nyamukapa CA, et al. (2004) 
Scale-free networks and sexually transmitted diseases: a description of observed patterns 
of sexual contacts in Britain and Zimbabwe. Sexually Transmitted Diseases 31: 380-387. 

17.  Jacquez JA, Simon CP, Koopman J, Sattenspiel L, Perry T (1988) Modelling and 
Analysing HIV transmission: the effect of contact patterns. Mathematical Biosciences 
92: 119-199. 

18.  Williams BG, Gilgen D, Campbell CM, Taljaard D, MacPhail C (2000) The Natural 
History of HIV/AIDS in South Africa: a biomedical and social survey. Johannesburg, 
South Africa: CSIR. 

 

  11/11 


	Mathematical note 
	Rate of expansion of male circumcision 
	Separating contact and transmission parameters 
	Random mixing 
	Differential impact of male circumcision on different groups 
	The three-group model 
	The impact of MC on men and women 
	The impact of MC on circumcised versus uncircumcised males 
	Collapsing the three-group model to a one-group model 
	Decline of transmission with increasing prevalence 
	References 


